

November 24-25, 2020

Contact Information: 991667214@qq.com

INTRODUCTION

In the United States, the production of pink salmon is approximately 200,000 tons in good harvest years, accounting for 60% of the total salmon production. Deep processing products of pink salmon include various peeled canned on frozen fillets and segments.

AIM

Due to the outbreak of mammalian diseases, as well as some ethnic and religious issues, the utilization of gelatin from land animals is limited. Most wastes from processing factories have not been utilized efficiently but instead are being dumped in water. Utilizing collagen and gelatin from pink salmon skin (PSK) can improve the added value of fish processing and reduce the environmental pollution caused by improper disposal.

METHOD

Scanning electron microscopy was performed by the method of Jongjareonrak et al. (2006) with slight modifications. The 6.67% (w/v) gelatin gel (frozen at -80 °C and sliced) with a thickness of 2-3 mm were fixed with 2.5% (v/v) glutaraldehyde in 0.2 M phosphate buffer (pH 7.2) for 1 h. The samples were rinsed with distilled water three times and dehydrated in ethanol with a serial concentration of 30%, 50%, 70%, 80%, 90%, and 100% (v/v). Dried samples were mounted on a bronze stub and sputtercoated with platinum b palladium. The specimens were observed with a SEM at an acceleration voltage of 30 kV.

Characterization of gelatin from pink salmon (Oncorhynchus gorbuscha) skin

Yaru Sun^{1, 3}, Zhiming Wu^{1, 3}, Rui Duan^{1, 2, 3}, Junjie Zhang^{1, 2, 3,*}

RESULTS

Electrophoresis

Figure 1 shows that the PSK collagen contains at least two different α chains (α_1 and α_2), and the molecular weight of α_1 and α_2 is between 116 and 158 kDa. Basic structures such as β , α_2 , and trimers were similar to those of cod collagen electrophoresis profile. The collagen of PSK was identified as type I (Wu, Kang, & Xiao, 2007), which is the dominant constituents of fish skin (Mahmoodani, et al., 2014). This result agrees with those for other fish species (Liang et al., 2012). The subunit molecular weight (α_1 , α_2 , and β chain) from PSK collagen is higher than that from cod skin collagen. No other bands were found in Lane 2, indicating high purity of the extracted collagen.

The gel microstructures of gelatins from PSK and silver carp skins were observed by SEM. They both showed interconnected pore networks. However, the differences were observed in these networks. The pores of PSK gelatin were larger than those of silver carp gelatin, indicating that the structure is fragile and easy to collapse. This phenomenon occurred because pink salmon is deep-sea fish with low growth temperatures, and silver carp is a freshwater fish with strong adaptability and cold tolerance (Duan, Zhang & Zhao, 2006).

1, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China. 2, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China. 3, College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China.

Scanning electron microscopy (SEM)

initial colla Complete

Concentratio

Phenomeno

o:the gel formed; ×: the gel did not form.

Table 1. Melting point of the gelatin extracted from pink salmon skins

	time consumed (s)	temperature (°C)	
ipse	273	19.4	
collapse	46	21.9	

Table 2. Solidification of gelatin gel at different concentrations

on (%)	1.5	2.0	2.2	2.3	2.4	2.5	2.6	_
on	×	×	×	×	0	0	0	_

CONCLUSIONS

The results showed that the PSK collagen was type I, and the denaturation temperature was approximately 16.0 $^\circ C$. The foaming capability and stability of PSK gelatin were 48.6% and 32.1%, respectively. The melting point was approximately 20.7 $^{\circ}$ C, and the minimum solidification concentration was 2.4%. The pores of PSK gelatin were larger than freshwater fish gelatin, indicating that the structure is fragile and easy to collapse. It can be concluded that gelatin from pink salmon skin has great potential in food processing applications.

This work was supported by the "Blue Project" young academic leaders in the universities of Jiangsu province (KQN1408).

REFERENCES

A chronic oral toxicity study of marine collagen peptides preparation from chum salmon (oncorhynchus keta) skin using sprague-dawley rat. Marine Drugs, 2012, 10(12), 20-34.

Characterization of edible films from skin gelatin of brownstripe red snapper and bigeye snapper. Food Hydrocolloids, 2006, 20(4), 492-501.

Optimization and physical properties of gelatin extracted from pangasius catfish (*pangasius sutchi*) bone. J Food, Technol, 2014, 51(11), 3104-3113.

291-295.

Research progress of collagen in fish skin. Meat research, 2007, 6, 23-25.

ACKNOWLEDGEMENTS

Properties of collagen from scale of carp. Food technology, 2006, 31(9),

November 24-25, 2020

Contact Information: <u>Tel: 18070496212</u> E-mail: 2287188910@qq.com

INTRODUCTION

Ovalbumin has antigenicity.

OGlycation can be used as a natural modification method to change the functional properties of proteins.

OTHE properties of glycated ovalbumin after digestion are rarely studied.

AIM

UTo annalyze the characteristics of glycated ovalbumin after digestion

 \checkmark To analyze the allergenicity of glycated ovalbumin ater digestion

METHOD

- Ovalbumin was glycated by microwave irradiation and then digested by different methods.
- SDS-PAGE, Free Amino groups, Ions chelating capacity, Antioxidant activity, Allergenicity were detected to evaluate the digesibility of ovalbumin.
- Molecular docking and mass spectrometry were used to elucidate the mechanism of microwave glycation and allergy.

Effect of microwave irradiation nonuniformity on the digestion and allergenicity of the glycated ovalbumin

Bi-zhen Zhong^a, Zong-cai Tu^{a,b,*}, Hui Wang^{a,*} ^a Nanchang University

^bNational R&D Center for conventional Freshwater Fish Processing, and Engineering Research Center

CONCLUSIONS

The results showed that microwave can unfold the structure of OVA and promote glycation.

The glycated OVA was digested more easily in gastric fluid than

More calcium and ferrous ions attached to the glycated samples and the glycated samples had better antioxidant abilities.

As for the allergenicity, glycation could reduce the IgG binding while increasing the IgE binding.

ACKNOWLEDGEMENTS

NSFC(31560458) NSFC(21706111) 2016BCB23017

REFERENCES

1. J. Liu, Z. C. Tu, Y. H. Shao, H. Wang, G. X. Liu, X. M. Sha, L. Zhang and P. Yang. Improved antioxidant activity and glycation of α -lactalbumin after ultrasonic pretreatment revealed by high-resolution mass spectrometry[J]. Journal of Agricultural & Food Chemistry, 2017, 65(47):10317-10324.

2. Y. Chen, Z. Tu, H. Wang, L. Zhang, X. Sha, J. Pang, P. Yang, G. Liu and W. Yang. Glycation of beta-lactoglobulin under dynamic high pressure microfluidization treatment: Effects on IgE-binding capacity and conformation[J]. *Food Research and International*, 2016, 89(Pt 1):882-888.

W. Yang, Z. Tu, H. Wang, L. Zhang and Q. Song. Glycation of ovalbumin after high-intensity ultrasound pretreatment: Effects on conformation, IgG/IgE binding ability and antioxidant activity[J]. Journal of the Science of Food & Agriculture, 2018,

4. D. I. Duan, Z. c. Tu, H. Wang, X. m. Sha and T. Huang. Physicochemical and functional properties of glycated ovalbumin in solid-state by microwave[J]. Food and Fermentation Industries, 2016, 42(11):48.

5. Z. C. Tu, B. Z. Zhong and H. Wang. Identification of glycated sites in ovalbumin under freeze-drying processing by liquid chromatograp resolution mass spectrometry[J]. *Food Chem*, 2017, 226:1-7.

November 24-25, 2020

Effect of ultrasonic pretreatment on the structure, antioxidant and IgG/IgE binding activity of β-lactoglobulin during digestion in vitro

Contact Information: 18354286339@163.com

INTRODUCTION

Previous studies mainly focused on the how ultrasonic effect the structure and functional properties of β -Lg. However, there are few studies on the changes of the allergenicity potential and antioxidant activity of ultrasonicated β -Lg during digestion in vitro.

AIM

The overall goal of this research was to study ultrasonic pretreatment and gastric and gastroduodenal digestion affect the structure, β -Lg's digestibility, antioxidant and allergenicity potential of β-Lg.

METHOD

- Ultrasonic treatment
- In vitro gastric and duodenal digestion
- **Tricine-SDS-PAGE**
- Molecular weight distribution
- **Intrinsic fluorescence emission spectroscopy**
- IgG/IgE binding ability
- **ABTS**·+ scavenging activity assay
- Cellular antioxidant activity (CAA) assay

Y. H. Shao 1, Y. Zhang 1, J. Liu 1, Z. C. Tu 1,2,* 1 Jiangxi Normal University, Nanchang, Jiangxi, China 2 Nanchang University, Nanchang, Jiangxi, China

RESULTS

After β -Lg was treated by ultrasonic prior to digestion in vitro, the treated β -Lg showed high intrinsic fluorescence emission and a red shift of λ max, this may be accounted for that the ultrasonic promotes the exposure of enzymatic cleavage site around Trp, enhances enzymatic hydrolysis, leading to the destruction of the structure around Trp, meanwhile prompting the Trp buried inside the conformation to be exposed.

The treated β -Lg showed more of the hydrolytic products and high antioxidant activity, the reason may be that ultrasonic pretreatment can change the structure of β -Lg and expose more digestion sites, resulting in the formation of peptides with smaller molecular weight and free amino acids, thus, the hydrolytic degree of β -Lg was enhanced by pepsin and trypsin. It indicated that ultrasonic pretreatment could effectively improve the antioxidant activity of β -Lg during in vitro digestion, attributed to the improvement the susceptibility of β -Lg during in vitro digestion, producing many small-molecule antioxidant peptides.

Native β -Lg was resistant to gastric digestion and retained its allergenicity. However, the allergenicity of ultrasonicated β -Lg after gastric digestion was increased due to ultrasonic promotes the production of peptides with intact structure and immunogenicity. Ultrasonic causes the unfolding of protein molecules, thereby increasing the accessibility of exposed hydrophobic amino acids to pepsin. Furthermore, these fragments have intact structure and immunogenicity, which exposes more allergenicity loci and antigen epitope. After gastrointestinal digestion, the IgG/IgE binding ability of β -Lg was increased, this may be due to the fact that more allergenic sites and conformational epitopes was exposed through the gastrointestinal tract, resulting in a significant increase in protein allergenicity. But, ultrasonicated β -Lg has a diametrically opposite results because the increase of small peptides with the decreasing of immunogenicity. Therefore, the structural changes of β -Lg by ultrasonic and gastrointestinal digestion were responsible for improving the antioxidant activity and reducing the IgG/IgE binding activity.

Effect of ultrasonic on the Intrinsic fluorescence emission spectra and $ABTS \cdot +$ scavenging activity of β -Lg during digestion in vitro.

samples

β-Lg

β-Lg-120

β-Lg-GD

β-Lg-120-0

β-Lg-DD

β-Lg-120-I

Tot (F1+F2+F3). F1 (18.3 KDa-5 kDa); F2 (5 kDa-1 KDa); F3 (<1 KDa)

Changes of ultrasonic pretreatment on the IgG (A), IgE (B) binding ability of β -Lg during digestion in vitro.

	Fraction relative area								
	F1/Tot	F2/Tot	F3/Tot						
	1.00	_							
	1.00	_	—						
	0.81	0.03	0.16						
FD	0.74	0.05	0.21						
	0.18	0.23	0.59						
DD	0.15	0.22	0.62						
rrespond to	F1 (10 to 13 min) F2 (13 min)	R to 15.5 min) and E3 (15.4	5 to 35 min						

The areas of fractions correspond to F1 (10 to 13 min), F2 (13 to 15.5 min) and F3 (15.5 to 35 min)

CONCLUSIONS

Ultrasonic pretreatment can improve the susceptibility of β -Lg during in vitro digestion, produce many small-molecule antioxidant peptides, thus upgrade the antioxidant activity compared with those of untreated sample. And, the IgG/IgE binding ability of ultrasonicated β -Lg after gastric digestion was increased. But, ultrasonicated β -Lg digested by gastrointestinal tract presents a completely opposite result. Ultrasonic increased the hydrolysis of β -Lg by trypsin and produced more small peptides that causes the decrease of IgG/IgE binding ability. Thus, ultrasonic pretreatment-assisted with digestion in vitro had a significantly positive effect on the antioxidant and IgG/IgE binding activity of β -Lg by altering the structure, which will be more likely to provide the theoretical basis for preparing the low sensitivity of dairy products in future.

ACKNOWLEDGEMENTS

This work was supported by the Chinese National Natural Science Foundation (No. 21878135) and earmarked fund for China Agriculture Research System (CARS-45).

REFERENCES

P-15

- 1 Ali, A et al. Effect of high-pressure homogenization on the structure and the interfacial and emulsifying properties of β-lactoglobulin. International Journal of Pharmaceutics, 2018; 537(1-2); 111-121.
- 2 Arroyo-Maya et al. Characterization of flavonoid-protein interactions using fluorescence spectroscopy: Binding of pelargonidin to dairy proteins. Food Chemistry, 2016; 213; 431-439.
- 3 Higuera-Barraza et al. Effects of high-energy ultrasound on the functional properties of proteins. Ultrasonics Sonochemistry, 2016; 31; 558-562.
- 4 Liu, J et al. Ultrasonic pretreatment combined with dry-State glycation reduced the immunoglobulin E/immunoglobulin G-binding ability of α -Lactalbumin revealed by high-resolution mass spectrometry. Journal of Agricultural and Food Chemistry, 2018; 66(22); 5691-5698.

November 24-25, 2020

Contact Information: hzz13667949044@163.com

INTRODUCTION

Gelatin is a product obtained by the partial hydrolysis of collagen. Porcine gelatin is the most widely used on the market, and its safety has also attracted public attention, due to the outbreak of foot and mouth disease (FMD). Religious believers such as Muslims and increasing rates of vegetarianism have further enhanced the importance of porcine gelatin traceability.

AIM

The main objective of this study was to obtain characteristic tryptic peptides of porcine gelatin that did not change at different extraction temperatures. Our findings should provide some useful information for porcine gelatin traceability.

METHOD

- 55 °C, 65 °C, and 75 °C were used to extract gelatin from porcine skin.
- Shear stress rheological detection techniques and a texture analyzer were applied to evaluate the gelling properties of porcine gelatin such as the gel strength, gelation point and melting point to confirm the effect of the extraction temperature on the functional properties.
- HPLC and linear-ion trap (LTQ)/Orbitrap high-resolution mass spectrometry were combined to investigate the differences in porcine gelatins extracted at various temperatures.

X. M. Sha 1,2, Z. Z. Hu 1,2, Y. H. Ye 1,2, H. Xu 1,2 and Z. C. Tu 1,2,3

RESULTS

Gelling properties

Gel st

Gelation

Melting

Identification

Different extraction temperatures resulted in the gelatins with various performances, which would further affect the traceability of porcine gelatin. Firstly, according to the multiple sequence alignment software, 69 and 70 of the theoretical sequence fragments were found for porcine gelatin and bovine gelatin, respectively. Based on accurate mass and tandem mass spectrometry, 64, 74, and 71 characteristic tryptic peptides were identified from porcine gelatins extracted at 55° C, 65° C, and 75° C, respectively. A total of 47 common characteristic peptides were detected in tryptic hydrolysates of porcine gelatins. In general, the extraction temperature showed a certain degree of impact on the traceability identification of porcine gelatin. Therefore, the identification of the porcine gelatin should refer to those common tryptic peptides that were not affected by the extraction temperature.

Effect of extraction temperature on the gelling properties and identification of porcine gelatin

1 National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China 2 Engineering Research Center for Freshwater Fish High-value Utilization of Jiangxi, Jiangxi Normal University, Nanchang, China 3 State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China

The extraction temperature significantly affected the gelling properties of porcine gelatin. When the extraction temperature increased from 55 $^{\circ}$ C to 75 $^{\circ}$ C, the gel strength of the porcine gelatin decreased from 717.36 g to 183.55 g. The gelation point declined from 21.30 $^\circ$ C to 9.08° C, and the melting point decreased from 30.23° C to 21.46 °C.

mples	55 °C	65 °C	75 °C
ength (g)	717.36±0.71a	638.10±9.44b	183.55±3.26c
point (° C)	21.30±0.50a	17.31±0.50b	9.08±0.35c
point (° C)	$30.23 \pm 0.49a$	26.73±0.51b	21.46±0.35c

CONCLUSIONS

When the extraction temperature increased from 55 °C to 75 °C, the gel strength, the gelation point and the melting point of the porcine gelatin decreased. Compared with the established theoretical sequence fragment database of porcine gelatin and bovine gelatin, 64, 74, and 71 tryptic porcine peptides in gelatins were extracted at 55 °C, 65 °C, and 75 °C, respectively. Notably, regardless of the extraction temperature, 47 common peptides were detected in the tryptic hydrolysates of porcine gelatins. Using these common tryptic peptides can effectively improve the accuracy of the porcine gelatin identification. The influence of different factors in the extraction process on the traceability of gelatin needs to be further researched to improve the credibility of gelatin identification.

ACKNOWLEDGEMENTS

This study was supported by the National Key R&D Program of China (No. 2018YFD0901101), the National Natural Science Foundation of China (No. 31660487, 31860428), and the Earmarked Fund for China Agriculture Research System (CARS-45).

REFERENCES

Ji, C. L., Lu, J. F., Lv, S., Jiang, S. T., & Lin, L. (2016). Effect of Extraction Temperature on Physical and Chemical Properties of Gelatin from Silver Carp Skin. Food Science, 37(9), 117-122. Sha, X. M., Tu, Z. C., Wang, H., Huang, T., Duan, D. L., He, N., Li, D. J., & Xiao, H. (2014). Gelatin quantification by oxygen-18 labeling and liquid chromatography-high-resolution mass spectrometry. Journal of Agricultural & Food Chemistry, 62(49), 11840-11853. Sha, X. M., Zhang, L. J., Tu, Z. C., Zhang, L. Z., Hu, Z. Z., Li, Z., Li, X., Huang, T., Wang, H., Zhang, L., & Xiao, H. (2018). The identification of three mammalian gelatins by liquid chromatography-high resolution mass spectrometry. LWT- Food Science and Technology, 89, 74-86.

November 24-25, 2020

Contact Information:

First author, m190310936@st.shou.edu.cn, *Corresponding author, jzhong@shou.edu.cn.

INTRODUCTION

Aroma is one of the most important indicators of food quality. Volatile organic compounds (VOCs) significantly impact food aroma. The effects of food thermal processing methods on food flavor have been explored in different foods. However, Gas chromatography-ion mobility spectrometry (GC-IMS) has not been applied to study the effect of thermal processing on the comprehensive aroma profiles of foods. So it will be beneficial for food industry to know the comprehensive VOCs profiles of raw Tilapia muscle and to compare the effects of thermal processing on the comprehensive profiles of VOCs.

AIM

The main objective in this study is to analyze the effect of four types of thermal processing methods on the aroma profiles of Tilapia muscles using GC-IMS.

METHOD

The thawed tilapia muscle pieces with sizes of 2×2 cm were cut in the middle position of every whole Tilapia fillet and the pieces were adjusted to weights of 7.91 – 8.08 g each. Then the fish muscle pieces were microwaved, roasted, steamed, or boiled.

- The chopped fish muscle piece was put in 20 mL headspace bottle, and the VOCs emitted from fish muscle fragments were analyzed by GC-IMS.
- Data analyses were performed using the commercial VOCal-0.1.1 software with four types plugins.
- All the samples were prepared in triplicate. Data are presented as means ± standard deviation. Statistical comparisons were made using student T-test.

Effect of four types of thermal processing methods on the aroma profiles of Tilapia muscles using gas chromatography-ion mobility spectrometry

J.H. Chen, T. Zhang, T.T. Wu, D.L. Luan, L. Ni, X.C. Wang, J. Zhong National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China.

RESULTS

As shown in Fig. 2, the raw and thermal processed Tilapia muscles showed different fingerprint plots of VOCs. Compared with other muscles, roasted muscles had five special VOCs. Therefore, roasted muscles had four unique VOCs. Boiled muscles had some significantly higher VOCs than other muscles. Raw muscles had some significantly higher VOCs than thermal processed muscles, which suggested thermal processing decreased these VOCs.

In order to deeply analyze the effect of thermal processing on Tilapia muscles, VOCs fingerprint comparisons of thermal processed Tilapia muscles with raw muscles were separately performed and compared (Fig. 3).

As shown in Figure 4, All the muscles showed obvious differences. The raw, boiled, steamed, and microwaved muscles were arranged from upper to bottom in the figure. In addition, roasted muscles are far away from other muscles.

As shown in Figure 1, It should be noted that GC-IMS detected both monomer and dimer forms of eight chemicals (hexanal, 3methylbutanal, 2-methylbutanal, acetoin, 2-butanone, 2-Pentanone, 2-methylpropanal, and Pentanal). Therefore, 20 types of VOCs were identified in the raw and thermal processed Tilapia muscles (Table 1), which mainly included four alcohols, nine aldehydes, six ketones, and one S-containing compound.

Table 1. Comparisons of the detected VOCs in raw and thermal processed Tilapia.

				Delft door	Pisik Volume (a.w.)			l'-inst											
Forumla	Molecular weight	Retention index	Retention time [sec]	RP relative	Microweved muscle	Roasted muscle	Steamed muscle	Builed imade	Row wasch	M-Ro	M-S	MЪ	M-Ro	Ro-S	Ku-B	Re-Ra	8-B	S-Rn	B-Ro
CSHIGO	128.5	585.2	500,386	1.15955	167,12,43,99	257.53.23.80	225.00.35.40	684 191100.54	1105.22.321.72	¥2		-1	11		11	$\widehat{\mathbf{u}}$	+1	-	14
C2560	45.1	456.7	90.53	1.04638	2890.54-402.35	2473.71-217.04	2442.22-372.56	26 2 32±8 (9)	2004.45.84.34										
Collino -	102.2	\$128.5	155,705	1/32905	33.52.67.2	28,15,0.00	3081-115	3.48.4.32	20.5323.54				254			14		1-1	224
¢ 311120	86.1	761.4	2-4.815	1,25167	\$1.30.2.52	63.99100.8	45.64,3158	39 R \$±14 77	(05,656.20	4-	10					+4		4-4	
C71.6D	104-1	582.1	50.02)	1.15032	NN 91-25-28	19-18-2246	26.2.58 D.85	12-16-28-24	226.65 5.25		• 2				370				
\$ 611125.0	100.2	1961.4	27126*	1 25305	387.901217.89	1002.19	1015 SK 2 15	15661-138.31	1623.28 5371	0.000	100	1.00	1.04						
< 6011250	100.2	248(8)	273.201	1.50212	18.29-41.64	20140106.87	210.85 32.15	1197.73 418.27	1750.38 (23.80	80		194			1.05	-	<u>8</u> 2		
<90080	342.2	1109.0	785.485	1 42159	359,70-37,27	371.16-45.73	257.82-11.04	3-5.98-23.44	53450-523										
<811160	123.2	1008	000.054	1.05468	1(44,34+7.00)	112.18-15.05	105,01-10.58	11.57-2010	110.38-2.69										
C7H1+O	114.2	\$90.2	403,000	1:33431	103.23-17.36	194.71-26-45	165.37-18.50	192,85-2.73	246.07-03.26		8 6	- 2 -	1000			- 35 -			1910
<3H100	85.1	640.7	103,135	1.17249	435.02-58.95	900.09-25.65	370.68+106.56	15 33-3136	725.33±311.63	+++					$\mathbf{I} = \mathbf{I}^{-}$				
<5H100	851	643.4	(4.32)	1-02.8	35 55±28 25	1350.54=33.11	60.43±32.20	-3.59±7.02	479.18±372.04	+12				111	1-1	60			
-C5H10O	85.1	662.9	73,102	1.1334	440.89.21.53	1032.54.00.00	334,151,117,55	178,734(1)82	832.134432.53	1,934		14		+44	4-4				
0.51110(3	85.1	838.1	70.068	1.39892	201.09.67.47	3358.87. 01/3	121.11.65 15	85.73.27.41	117534_00135					+11	1-1	¥0			
C4F80	22.1	353.1	28.55	1.16137	195.08.25.78	1296-70., (4120)	119-53-69-05	205.62.41.25	335 281 155 46					468	4-0	4+4			
CHESIC	-23.1	1810	28-131	1.256.5	25.62 5.78	ANTES TINT	10.01 344	2.82.6.2	611812234						*-*	4.+s			
< 5110R1	884	2004	189.2.1	1.18221	794 91 -11 88	151 s7 -0008	188.06 25.87		30% (0 . 19 W)		£2						4 3		24
C 51110C)	351	A94 (10 551	1.4247	12.14-275	26.12.2.10	12:06 [1]9	359023.5v	15:06-25:5	2 1		20 0 3				8 0	20		3
<700-9	114.2	491.×	.990,358	13/20	6754-1131	274.41-35-4	82.52-3×3	87.99-5.55	84.24-1.92	-									
C4H3C2	45.1	705.2	200.87	1 05714	404.52-35.32	579.9C+140.47	545.80+118.26	20535+114.71	273.06+132.41										
C4H5C2	85.1	767	199.200	1 33142	eD.84±17.25	114.33±50.64	94.93±39.03	70 -1+33.41	106.33-45.42										
C4E8C	72.1	587.2	141.3	1.05709	306.29-29-29	1794.41::02.70	\$73,20-\$5.00	857 07±106.77	701.53±78.85	+11	112	21		111	1.1	111			
C41580	72,1	585.0	(4).525	1.24854	19, 8±7.95	339: 26:435/29	295,50::88.22	295.57±100.34	203,82::45.37		53	12	121	+1.8	3.54				
0.5H100	85.1	1758	83.205	1.12097	31.07_7.33	350.34_34.01	31.38.41.75	21.5820.02	30.56.6.88	19				1-	10				
C5H100	85.1	685.8	384.02	1.37245	2.6610.56	364-301 (16:05	14.22.523	14.30.11.82	1832.0.05	8.		200	6.61	(e)))	1	¥6			
CSL ett	-58.1	(89	108.201	1.1.1695	1582.73.203.25	981.51-168	2535.01. (4159	226.71.272.31	\$182,50,379,00	-44	44	30	**		**			-4	
\$51100	38.1	NON N	19-275	1.1 (0 - 1	18-24-0-26	11155-76.07	17.8212235	28 an (487	ar 16 († 13				100						
1.2(168	62.1	5.96.5	:2. J.V.	6.99780	26/15 -0454	593-001-258-sit	1325-08-556.21	1289 57 (266 59	2498-40-264-41						***	-		ē.	

In summary, the VOCs in raw and thermal processed (microwaved, roasted, steamed, and boiled) Tilapia muscles were qualitatively and quantitatively analyzed by using GC-IMS technique. About 20 types of VOCs (four alcohols, nine aldehydes, six ketones, and one S-containing compound) were identified in the raw and thermal processed Tilapia muscles. In general, four types of thermal processing methods had obvious and different effects on the flavor of Tilapia muscles. Roasting processing might be the best thermal processing method to increase the flavor of Tilapia muscles due to the significant increase of ketones.

ACKNOWLEDGEMENTS

This research has been supported by research grants from the National Key R & D Program of China (No. 2019YFD0902003) and Shanghai Municipal Education Commission - Gaoyuan Discipline of Food Science & Technology Grant Support (Shanghai Ocean University). We also thank Hao Zhang and Xiaochun Xia from Shandong Hanon Scientific Instrument Co., Ltd. for their technical assistance.

REFERENCES

1415-1418. Chemistry, 97, 496-504.

CONCLUSIONS

He, J., & Qi, M. (2019). A new type of triptycene-based stationary phases with alkylated benzimidazolium cations for gas chromatographic separations. Chinese Chemical Letters, 30,

Sun, T., Wang, M., Wang, D., & Du, Z. (2020). Solid-phase microextraction based on nickel-foam@polydopamine followed by ion mobility spectrometry for on-site detection of Sudan dyes in tomato sauce and hot-pot sample. Talanta, 207, 120244.

An, Y., Liu, S., Hao, F., Wang, Y., & Tang, H. (2019). Development and validation of an improved probabilistic quotient normalization method for LC/MS- and NMR-based metabonomic analysis. Chinese Chemical Letters.

Zhang, X., Dai, Z., Fan, X., Liu, M., Ma, J., Shang, W., Liu, J., Strappe, P., Blanchard, C., & Zhou, Z. (2020). A study on volatile metabolites screening by HS-SPME-GC-MS and HS-GC-IMS for discrimination and characterization of white and yellowed rice. Cereal

Wang, S., Chen, H., & Sun, B. (2020). Recent progress in food flavor analysis using gas chromatography–ion mobility spectrometry (GC–IMS). Food Chemistry, 315, 126158.

Corresponding author : Jing XIE. Tel.: 86-21-61900351 Fax: 86-21-61900365 E-Mail: jxie@shou.edu.cn.

INTRODUCTION

- Large yellow croaker (*Pseudosciaena crocea*), as a traditional species of marine fish, has been favored by many consumers for its good taste and high nutritional values. Due to its high nutritive content, large yellow croaker is highly perishable like the other fishery products. It will deteriorate rapidly without preservation, which always cause great economic losses.
- Chitosan (CS) is a natural polysaccharide with semipermeable membrane, can be used to coat on fish, fruit, vegetables, meat and so on as a protective film to improve quality and extend shelf life.

AIM

To investigate the effects of chitosan (CS) coating on quality and protein characteristics of large yellow croaker (*Pseudosciaena crocea*) during ice storage.

METHOD

Ice-fresh large yellow croakers with an average weight of 500 ± 50 g and length of 340 ± 20 mm.

- 201306, China*

Effects of chitosan coating on quality and protein characteristics of large yellow croaker (*Pseudosciaena crocea*) during ice storage Weiqing LAN ^{1,2,3} Jintao DU ¹ Meng WANG ¹ Jing XIE^{1,2,3*}

1. College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China 2. Shanghai Aquatic Products Processing and Storage Engineering Technology Research Centre, Shanghai 201306, China 3. National Experimental Teaching Demonstration Centre for Food Science and Engineering (Shanghai Ocean University), Shanghai

Fig.2 Effects of chitosan coating on TBA value of Pseudosciaena crocea during ice storage

Fig.4 Effects of chitosan coating on sulfhydryl content of *Pseudosciaena crocea* during ice storage

100 310 320 330 340 350 360 370 380 390 400 410

Fig.5 Effects of chitosan coating on Ca2+ -ATPase of *Pseudosciaena crocea* during ice storage

wavelength (nm)

Fig. 7 Effects of chitosan coating on the intrinsic fluorescence intensity (IFI) of myofibrillar protein in Pseudosciaena crocea during ice storage

290 300 310 320 330 340 350 360 370 360 390 400 410

wavelength (nm)

CONCLUSIONS

• Chitosan treatment could effectively inhibit the activity of endogenous enzymes and microbial growth.

• Chitosan treatment also protect the invariability and structural changes of proteins in large yellow croaker (Pseudosciaena *crocea*) during ice storage.

ACKNOWLEDGEMENTS

The study was financially supported by National Key R&D Program of China (2019YFD0901602), China Agriculture Research System (CARS-47-G26), Ability promotion project of Shanghai Municipal Science and Technology Commission Engineering Center (19DZ2284000)

REFERENCES

• Merlo T C, Contreras-Castillo C J, Saldaña E, et al. Incorporation of pink pepper residue extract into chitosan film combined with a modified atmosphere packaging: Effects on the shelf life of salmon fillets[J]. Food Research International, 2019, 125: 108633.

• Li F, Wang B, Kong B, et al. Decreased gelling properties of protein in mirror carp (Cyprinus carpio) are due to protein aggregation and structure deterioration when subjected to freeze-thaw cycles[J]. Food Hydrocolloids,

• Zhang L, Li Q, Jia S, et al. Effect of different stunning methods on antioxidant status, in vivo myofibrillar protein oxidation, and the susceptibility to oxidation of silver carp (Hypophthalmichthys molitrix) fillets during 72 h postmortem[J]. Food Chemistry, 2018, 246: 121-128.

• Sun Q, Chen Q, Xia X, et al. Effects of ultrasound-assisted freezing at different power levels on the structure and thermal stability of common carp (Cyprinus carpio) proteins[J]. Ultrasonics Sonochemistry, 2019.

• Hui G, Liu W, Feng H, Li J, Gao Y, Effects of chitosan combined with nisin treatment on storage quality of large yellow croaker (Pseudosciaena crocea), Food Chem. 203 (2016) 276–282.

Contact Information:

Haiyuan_Huang@126.com

FSMILE 2020

Effects of different drying methods on the quality and nonvolatile taste compounds of Black Carp

Haiyuan Huang1, Wenzheng Shi2*

INTRODUCTION

As an effective method of food processing and preserving, drying not only improve the quality of the product, but also extend shelf life. The reasonable drying will give food seductive color and unique flavor.

AIM

The purpose of this study was to investigate the effects of hot air drying and vacuum drying on quality and nonvolatile taste compounds of black carp. Such as texture, color, amino nitrogen content, ATP-related compounds, free amino acid and Equivalent Umami Concentration.

METHOD

Sample preparation: Taking dorsal meat out and cut it into $3 \text{ cm} \times 2 \text{ cm} \times 1.5 \text{ cm}$ fish pieces. The sample was spread in in hot air drying oven and vacuum drying oven and dried in atmospheric pressure at 50 °C for 12h. Samples were taken out every two hours.

Moisture content: The determination of moisture content referred to the GB 5009.3-2016.

Hardness and Color: A TA-XT Plus texture analyzer , a P/2 (diameter 2mm) flat-head stainless steel cylindrical probe and a portable colorimeter CR-20 were used to measure the hardness and color of the fish pieces.

SEM observation: The microstructure of the sample was observed by a scanning electron microscope

Amino nitrogen: Amino nitrogen (ANN) content was measured using a potentiometric titrator.

ATP-related compounds: Use Waters 2695 high performance liquid chromatography equipped with COSMOSIL 5C18-PAQ liquid chromatography column and SPD-10A (V) detector.

Free amino acids: Use automatic amino acid analyzer (L-8800, Hitachi, Japan) to determine and analyze free amino acids.

RESULTS

Fig 1. Changes in moisture content of black carp in two drying methods Different lowercase letters show that the mean values are significantly different (p < 0.05)

_		Table :
_	drying meth	od tin
-	HD	
-	VD	
_	Note:	Differe
		Table 2 Char
Amino spec	acid Taste cha	racteristics
As	p uman	ni (+)
Th	ır swee	t (+)
Se	swee	t (+)
Gl	u uman	ni (+)
Gl	y Sweet/ur	nami (+)
Al	a Sweet/ur	nami (+)
Су	vs bitter/swee	t/surfur (-)
Va	d Sweet/b	itter (-)
Me	et bitter/swee	t/surfur (-)
Ile	e bitte	r (-)
Le	u bitte	r (-)

1, college of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China Haiyuan_Huang@126.com

2, college of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China * wzshi@shou.edu.cn

The moisture content of the sample was 78.55% for fresh, 45.86% for HD 12 hours and 56.75% for VD 12 hours. When HD was dried for 8 hours, and VD was dried for 12 hours, the moisture content of both two drying methods was close to 55%.

The hardness of black carp after drying was significantly increased compared to fresh, which is related to its contention of moisture, protein, fat and muscle tissue state. When HD reached 8 hours, and VD reached 12 hours, the hardness of HD was higher than that of VD.

Fig 2. Changes in the hardness of black carp in two drying Different lowercase letters show that the mean values are significantly different (p < 0.05)

1 Changes in ATP-related compound of black carp in different drying methods (mg/100g dry weight)

		TAV						
ime (h)	IMP	ATP	ADP	HxR	AMP	Hx	IMP	AMP
0	494.51±31.17°	6.68 ± 1.79^{a}	57.39 ± 0.52^{ab}	396.80±17.79 ^b	4.82 ± 1.05^{a}	34.69±1.39°	$19.78 \pm 1.24^{\circ}$	0.09 ± 0.02^{a}
2	767.44 ± 34.21^{d}	10.79 ± 0.88^{b}	63.74 ± 0.38^{bc}	$277.18 \!\pm\! 10.33^a$	8.86 ± 1.48^{b}	15.93 ± 0.55^{a}	30.69 ± 1.36^{d}	0.17 ± 0.02^{b}
4	417.67±26.59 ^b	11.63 ± 3.28^{b}	52.88 ± 6.74^{a}	434.25 ± 29.90^{b}	10.60 ± 2.04^{b}	26.45 ± 1.97^{b}	16.70 ± 1.06^{b}	0.21 ± 0.04^{b}
8	129.05 ± 16.81^a	$17.83 \pm 2.08^{\circ}$	72.08 ± 3.55^{d}	504.94±66.93°	$14.22 \pm 1.34^{\circ}$	34.23±4.17°	5.16 ± 0.67^{a}	$0.28 \pm 0.02^{\circ}$
12	$108.12\!\pm\!5.14^a$	27.81 ± 2.38^{d}	66.07 ± 2.38^{cd}	$531.15 \pm 28.80^{\circ}$	9.81 ± 1.25^{b}	43.09 ± 2.01^{d}	4.32 ± 0.20^{a}	0.19 ± 0.02^{b}
0	494.51 ± 31.17^{d}	6.68 ± 1.79^{a}	57.39 ± 0.52^{a}	396.80±17.79 ^b	4.82 ± 1.05^{a}	34.69 ± 1.39^{b}	19.78 ± 1.24^{d}	0.09 ± 0.02^{a}
2	370.76±40.81°	6.06 ± 0.13^{ab}	54.88 ± 4.63^{a}	328.61 ± 41.27^{a}	5.05 ± 0.35^{a}	18.28 ± 2.44^{a}	$14.83 \pm 1.63^{\circ}$	0.10 ± 0.00^{a}
4	230.55 ± 18.06^{b}	14.31 ± 4.58^{cd}	$52.32\!\pm\!10.05^a$	$562.22 \pm 16.06^{\circ}$	$15.37 \pm 2.54^{\circ}$	$42.51 \pm 1.86^{\circ}$	9.22 ± 0.72^{b}	$0.30 \pm 0.05^{\circ}$
8	$59.89 \!\pm\! 7.24^a$	10.46 ± 1.21^{bc}	78.57 ± 2.09^{b}	$592.36 \pm 4.40^{\circ}$	13.33 ± 1.28^{bc}	48.51 ± 1.47^{d}	2.39 ± 0.28^{a}	0.26 ± 0.02^{bc}
12	18.42 ± 1.13^{a}	14.93 ± 0.89^{d}	70.98 ± 3.84^{b}	583.23±26.20°	10.88 ± 0.62^{b}	56.95 ± 2.44^{e}	0.73 ± 0.04^{a}	0.21 ± 0.01^{b}

ent lowercase letters in the same column and part show a significant difference (p < 0.05)

	Conten	ts (mg/100g dry we	eight)		mino acid	Taste characteristics		Contents (mg/100g dry weight)			
Oh	2 h	4 h	8h	12h	species		Oh	2 h	4 h	8h	12h
1.69±0.03 ^a	2.06±0.04 ^b	2.07 ± 0.06^{b}	2.16±0.00 ^b	3.50±0.09°	Asp	umami (+)	1.69±0.03 ^a	2.49±0.02 ^b	2.84±0.23 ^c	1.98±0.11 ^a	2.92±0.13°
71.43±3.64 ^{bc}	73.68±1.35°	66.29 ± 4.00^{b}	57.75 ± 0.74^{a}	$50.90{\pm}2.26^{a}$	Thr	sweet (+)	71.43±3.64 ^b	57.62±1.42 ^a	58.56±0.34 ^a	58.47±4.39 ^a	58.27±1.20 ^a
$24.37{\pm}1.25^{b}$	30.15±0.44 ^c	30.06±1.65°	$26.37{\pm}0.39^{b}$	21.30±1.13 ^a	Ser	sweet (+)	24.37±1.25ª	22.88±0.35 ^a	23.68±0.74 ^a	23.06±1.80 ^a	22.65±0.68 ^a
13.47 ± 0.01^{a}	$18.34{\pm}0.52^{b}$	20.53±0.70 ^c	29.64±0.43 ^e	$26.49{\pm}1.06^{d}$	Glu	umami (+)	13.47±0.01 ^a	18.33±0.29 ^b	22.47±1.57 ^c	24.33±2.04 ^c	25.56±0.47°
192.16±9.28 ^a	$252.50{\pm}0.98^{\circ}$	254.54±12.01°	$224.23{\pm}1.04^{b}$	$208.37 {\pm} 9.50^{ab}$	Gly	Sweet/umami (+)	192.16±9.28 ^a	296.82±5.51°	292.88±0.55 ^c	193.41±14.30 ^a	226.06±3.99 ^b
113.92±6.77 ^a	$135.35{\pm}1.95^{b}$	122.67±9.70 ^{ab}	$120.21{\pm}1.23^{ab}$	$134.52{\pm}6.88^{b}$	Ala	Sweet/umami (+)	113.92±6.77 ^b	$98.85{\pm}2.96^{a}$	93.40±1.15 ^a	$105.76 {\pm} 7.18^{ab}$	138.10±2.70 ^c
$19.73{\pm}0.27^{a}$	$19.60{\pm}0.50^{a}$	$15.74{\pm}2.08^{b}$	14.37 ± 0.49^{b}	$10.73{\pm}1.74^{a}$	Cys	bitter/sweet/surfur (-)	19.73±0.27 ^d	18.35±1.06c ^d	17.32±0.16 ^c	15.53±0.83 ^b	13.36±0.18 ^a
$41.85{\pm}1.65^{ab}$	$46.99 {\pm} 0.57^{b}$	$39.88{\pm}4.28^{a}$	$40.69{\pm}0.29^{ab}$	$38.37{\pm}3.19^{a}$	Val	Sweet/bitter (-)	41.85±1.65 ^b	30.46±1.67 ^a	30.23±0.60 ^a	40.28±3.08 ^b	39.81±0.89 ^b
$12.34{\pm}0.54^{a}$	$13.27{\pm}1.16^{a}$	$9.88{\pm}1.97^{a}$	$11.24{\pm}0.39^{a}$	$10.17{\pm}2.55^{a}$	Met	bitter/sweet/surfur (-)	12.34±0.54 ^a	12.24±2.54 ^a	10.77±0.11 ^a	11.45±0.66 ^a	13.37±0.22 ^a
17.11 ± 0.93^{a}	19.69 ± 0.47^{b}	$19.20{\pm}1.18^{ab}$	17.78 ± 0.32^{ab}	$18.88{\pm}0.86^{ab}$	Ile	bitter (-)	17.11±0.93°	14.26±0.39 ^a	14.69±0.39 ^{ab}	16.60±1.43 ^{bc}	19.93 ± 0.50^{d}
$31.49{\pm}1.61^{a}$	$35.41{\pm}0.52^{b}$	$34.44{\pm}1.81^{ab}$	$31.27{\pm}0.52^{a}$	$32.84{\pm}1.54^{ab}$	Leu	bitter (-)	31.49±1.61 ^{ab}	27.73±0.80 ^a	27.59±1.48 ^a	29.39±2.30 ^a	34.36±0.94 ^b
$38.67{\pm}1.36^d$	37.61 ± 0.44^d	$34.52{\pm}1.36^{\circ}$	$28.91{\pm}0.29^a$	$31.85{\pm}1.15^{b}$	Tyr	bitter (-)	38.67±1.36 ^b	33.84±0.51 ^{ab}	29.78±4.48 ^a	29.97±1.52 ^a	35.00±0.83 ^{ab}
$2.10{\pm}0.12^{a}$	$2.48{\pm}0.06^{a}$	$2.12{\pm}0.03^{a}$	$43.39{\pm}2.12^{\circ}$	$39.38{\pm}0.87^{b}$	Phe	bitter (-)	2.10±0.12 ^a	$2.64{\pm}0.12^{a}$	1.58±0.23 ^a	51.62±0.06 ^c	47.34±0.77 ^b
$664.16{\pm}19.32^{bc}$	$714.83{\pm}4.80^{\circ}$	$636.34{\pm}41.58^{ab}$	$586.99{\pm}6.07^{a}$	$598.12{\pm}15.86^{a}$	Lys	Sweet/bitter (-)	664.16±19.32°	653.20±5.06 ^c	598.45±19.98 ^b	523.99±33.43 ^a	571.28±9.75 ^{ab}
$905.67{\pm}48.32^{bc}$	$974.20{\pm}16.98^{\circ}$	$846.50{\pm}44.00^{ab}$	$809.05{\pm}13.83^{a}$	$790.89{\pm}32.62^{a}$	His	bitter (-)	905.67±48.32 ^b	755.76±25.31 ^a	749.51±49.31 ^a	778.47±59.13 ^a	$783.41{\pm}19.17^{a}$
$44.93{\pm}2.72^{a}$	$53.73{\pm}1.65^{b}$	$64.48{\pm}4.60^{\circ}$	$49.46{\pm}0.94^{a}$	$64.85{\pm}3.56^{\circ}$	Arg	Sweet/bitter (+)	44.93±2.72 ^b	32.47±0.75 ^a	35.31±0.17 ^a	37.52±3.64 ^a	74.41±1.63 ^c
73.25 ± 3.66^{b}	$97.53{\pm}1.10^{d}$	$81.97{\pm}4.96^{\circ}$	$91.70{\pm}2.21^d$	54.70±2.81 ^a	Pro	Sweet/bitter (+)	73.25±3.66 ^b	71.24±3.32 ^b	75.42±1.31 ^b	71.26±5.68 ^b	58.03±1.85 ^a
$490.31{\pm}24.67^{a}$	$609.63 {\pm} 3.39^{d}$	578.16 ± 33.10^{cd}	$552.09{\pm}6.07^{bc}$	$499.81{\pm}23.74^{ab}$	∑USAA		490.31±24.67ª	568.26±13.30 ^b	569.29 ± 2.50^{b}	478.31±35.54ª	$531.62{\pm}11.05^{ab}$
$1758.36{\pm}75.51^{ab}$	$1898.24{\pm}14.61^{b}$	$1687.39{\pm}100.78^{a}$	$1618.81{\pm}19.8^{a}$	$1625.38{\pm}62.24^{a}$	∑BAA		1758.36±75.51 ^b	1562.64±37.20 ^a	1497.95±77.64 ^a	1519.33±105.16 ^a	1618.96±34.73 ^{ab}
2268.41±100.45 ^a	$2527.49{\pm}17.51^{b}$	2281.30±135.98 ^a	$2185.28{\pm}25.39^{a}$	2135.93±87.73 ^a	∑FAA		2268.41±100.45 ^b	2149.26±51.56 ^{ab}	$2084.57 {\pm} 79.98^{ab}$	2013.18±141.54 ^a	2163.95±45.97 ^{ab}

As the drying time increase, W of HD and VD had the same trend, first increased and then decreased. They reached the highest value in 2 hours and 8 hours respectively. The b* of HD and VD was continuously increased during drying time, and it related to fat oxidation.

Fresh black carp muscle fiber bundles were arranged neatly and uniform thickness. After the HD, the black carp muscle fibers were partially broken, the muscle fiber structure of black carp after VD was still complete

From Table 1, the contents of AMP and IMP of HD were higher than those of VD, indicating that the black carp was more delicious after being dried by HD. From Table 2 and Table3, When the drying time reached 12 hours, the TFAAs content of HD was 2135.93 mg/100g dry weight, while the TFAAs content of VD was 2163.95 mg/100g dry weight. The TFAAs content of two drying method did not have much difference, suggesting that the prolonged drying time make the protein hydrolysis completely, and the change was not significant.

Fig 4. Changes in ANN content of black carp in different drying methods (dry weight) Different lowercase letters show that the mean values are significantly different (p < 0.05)

The ANN content in HD and VD is shown in Figure 4. During the drying process, ANN content of HD and VD both showed a first increased and then decreased trend. Hot air drying changes more significantly than vacuum drying.

Fig 5. Changes in microstructure of black carp in two drying methods (×100) (a)Fresh, (b)HD for 8 hours, (c)VD for 12 hours

CONCLUSIONS

This paper takes black carp as the research object and compares the quality changes of hot air drying and vacuum drying during the drying process. Studies have shown that during the drying process of black carp, the b* and hardness increased, the whiteness, amino nitrogen, ATP-related compounds, free amino acids first increased and then decreased. IMP, Glu, Pro, Ala and Gly showed a great contribution to umami and sweetness.

ACKNOWLEDGEMENTS

This study was funded by a Key R&D Program (No. 2018YFD0901003).

REFERENCES

114.

[1]. Yu, X., et al., Estimation of color changes in fish surface at the beginning of grilling based on the degree of protein denaturation. Journal of Food Engineering, 2014. 129: p. 12-20.

[2] Artnaseaw, A., S. Theerakulpisut, and C. Benjapiyaporn, Drying characteristics of Shiitake mushroom and Jinda chili during vacuum heat pump drying. Food and Bioproducts Processing, 2010. 88(C2-3): p. 105-

[3] Vieira, E.C.S., et al., Effects of different frying techniques on the color, fatty acid profile, and lipid oxidation of Arapaima gigas. Journal of Food Processing and Preservation, 2018. 42(11): p. 8.

[4]. Offer, G., et al., The structural basis of the water-holding, appearance and toughness of meat and meat products. Food Microstructure, 1989. 8(1): p. 151-170.

[5] Imm, J.Y. and C.M. Lee, Production of seafood flavor from red hake (Urophycis chuss) by enzymatic hydrolysis. Journal of Agricultural and Food Chemistry, 1999. 47(6): p. 2360-2366.

[6] Nishimura, T., et al., Components contributing to the improvement of meat taste during storage. Agricultural and Biological Chemistry, 1988. 52(9): p. 2323-2330.

[7]. Ishiwatari, N., et al., Decomposition kinetics of umami component during meat cooking. Journal of Food Engineering, 2013. 119(2): p. 324-331.

[8] Yuan, L., X. Xing-Lian, and Z. Guang-Hong, Changes in taste compounds of duck during processing. Food Chemistry, 2007. 102(1): p. 22-26.

[9] Tikk, M., et al., Development of inosine monophosphate and its degradation products during aging of pork of different qualities in relation to basic taste and retronasal flavor perception of the meat. Journal of Agricultural and Food Chemistry, 2006. 54(20): p. 7769-7777.

[10] Howgate, P., A review of the kinetics of degradation of inosine monophosphate in some species of fish during chilled storage. International Journal of Food Science and Technology, 2006. 41(4): p. 341-353.

Comparison of the flavor substances and protein degradation of black carp (Mylopharyngodon piceus) pickled products during steaming

Contact Information: Email:jasperwang1203@163.com

INTRODUCTION

- Black carp (Mylopharyngodon piceus), a kind of carnivorous fish, is one of the four traditional freshwater farmed fish species that distribute in the south of the Yangtze River, China. In 2019, its national production amounted to 679.6 thousand tons.
- Appropriate thermal processing conditions not only gives the products their distinctive color, flavor, and texture, but also kills microorganisms to enhance the product's quality and safety. Besides, it can increase the digestibility of protein through denaturation, which facilitates nutrients' absorption for human.

AIM

In order to investigate the influence of different steaming times on the flavor changes of black carp pickled products, this study mainly used highperformance liquid chromatography (HPLC) to analyze the nucleotides and free amino acids during steaming. The protein degradation was also discussed. The results of this paper provide suitable conditions for steaming black carp and provide theoretical and technical support for further processing of black carp.

METHOD

Fresh black carp Cleaning and killing Removing viscrea, blood, and head Taking its dorsal meat Ultrasound-assisted pickling for 40 mins

Starting to steam

a Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China * Correspondence Email: wzshi@shou.edu.cn

F	RESU
	As shown it contents in un that of Gly in increased the (8.86 mg/100 mg/100 g, re steaming. Bit constant durit of His increa their threshol formation. Th in freshwater Tab. 1 Chang
	Types
	Thr★ Gly★ Ala★ Lys▲
	His▲
	★ represe in the san steaming
	As shown predomina accumulat was obser 25 mg/10 flavor mos the maxim was less th final produ steaming, increased Tab. 2
	Steam time/r
	4
	6
	8
	10
	12
	14

Yixin Wang^a, Wenzheng Shi^{a,*}

LTS

in Tab. 1, during the steaming of pickled black carp, the Thr, Gly, and Ala showed higher mami and sweet amino acids. The content of Thr was highest (23.98 mg/100 g) at 8 min, while reduced significantly to the minimum (23.86 mg/100 g) at this point. The content of Ala en decreased. The reduction was most evident at 8 min, and the value at 12 min was the lowest 0 g). However, their contents were far below thresholds (260 mg/100 g, 130 mg/100 g, and 60 espectively), indicating that the three free amino acids had little effect on the flavor during itter amino acids presented higher contents of Lys and His. Lys content, which was almost ing steaming, reached the maximum value of 120.36 mg/100 g at 14 min. Besides, the content ased significantly to its maximum of 270.95 mg/100 g at 8 min. Both of the values exceeded olds (50 mg/100 g and 20 mg/100 g, respectively), which was not conducive to the flavor There has been research pointed out that Lys and His are major components of free amino acids fish. which is consistent with the result in this paper.

ges of main free amino acids content of black carp meat during steaming

Threshold		Contents (mg/100 g)						
	4 min	6 min	8 min	10 min	12 min	14 min		
260.00	21.23±1.25 ^c	23.77±1.71 ^d	23.98±0.29 ^d	17.63±0.23 ^b	18.90±0.40 ^b	15.30±0.53ª		
130.00	34.13±1.43°	32.39±2.20°	23.86±0.02 ^a	27.34±1.88 ^{ab}	24.86±0.50 ^a	28.61±0.79 ^b		
60.00	17.20±0.12 ^e	17.43±1.18 ^e	14.38±0.17 ^d	10.88±0.49 ^b	8.86±0.23ª	12.69±0.41°		
50.00	117.75±8.38 ^a	119.09±3.64 ^a	118.47±1.2 ^a	118.87±0.80ª	119.48 ± 1.85^{a}	120.36±1.78ª		
20.00	223.48±14.06 ^a	244.47±15.00 ^{ab}	270.95±7.18°	233.48±11.74 ^{abc}	259.06±5.89 ^{bc}	222.73±7.53ª		

ents fresh and sweet amino acids; ▲ represents bitter amino acids; Data me row with different letters are significantly different (p < 0.05) during

n in Tab. 2, the content of nucleotides varied during time. As the time extends, the IMP content nated because the slow degradation of AMP into HxR during ATP degradation resulted in IMP ation. This content increased significantly from 8 min to 10 min, after which no obvious change rved. It reached the maximum value of 210.85 mg/100 g at 14 min. The threshold of IMP was DO g, and its TAV was greater than one consistently, indicating that IMP contributed to the ostly. The AMP content increased along with the extension of the steaming time and reached mum value of 8.56 mg/100 g at 14 min. The threshold of AMP was 50 mg/100 g, and its TAV than one consistently, indicating that AMP had an unobvious effect on the taste. Hx, as the Juct of ATP degradation, is associated with bitterness. Its content fell then increased. During , the value plummeted at 6 min and reached a minimum of 0.65 mg/100 g at 10 min. Then, it significantly to 0.79 mg/100 g at 12 min.

Changes of nucleotide compounds content of black carp meat during steaming

ning min				TA	N			
	IMP	ATP	ADP	AMP	Hx	HxR	IMP	AMP
	204.97±12.01°	11.73±1.22 ^b	9.36±0.19ª	5.87±0.57ª	1.08±0.10 ^d	24.38±1.66 ^c	8.20±0.48°	0.12±0.01ª
	$191.28{\pm}8.21^{ab}$	11.50±0.90 ^b	8.70±0.49 ^a	6.12±0.36 ^a	0.70±0.06 ^{ab}	19.47±0.59ª	7.65±0.32 ^{ab}	0.12±0.01 ^a
	186.00±4.54ª	9.31±0.93ª	9.16±0.13 ^a	6.40±0.11ª	0.90±0.03°	24.37±1.44 ^c	7.44±0.18ª	0.13±0.01ª
)	209.08±3.83°	15.64±0.38°	9.70±0.63ª	7.37±0.29 ^b	0.65±0.02ª	21.34±0.68 ^{ab}	8.36±0.15 ^c	0.15±0.01 ^b
2	201.32±2.62 ^{bc}	16.53±0.65°	9.34±0.89 ^a	7.49±0.23 ^b	0.79 ± 0.02^{b}	22.74±0.37 ^{bc}	8.05±0.11 ^{bc}	0.15 ± 0.01^{b}
1	210.85±6.70°	26.34±1.35 ^d	9.67±0.40ª	8.56±0.46 ^c	0.69±0.03 ^{ab}	21.25±1.23 ^{ab}	8.44±0.27 ^c	0.17±0.01°

Data in the column with different letters are significantly different (p < 0.05) during steaming.

Figure 3 shows the EUC value calculated throughout steaming, which decreased initially and then increased. At 8 min, the value plummeted to the lowest 1.42 g MSG/100 g. In other words, the umami intensity of each gram of carp was equivalent to 1.42 g of monosodium glutamate (MSG). The change was not significant after 10 minutes. The EUC value reached its maximum at 4 min, which was 1.94 g MSG/100 g. The value at 6 min did not change significantly compared to that at 4 min, and the EUC value was 1.81 gMSG/100 g. The MSG threshold is 0.03 g/100 mL. During the steaming process, all TAV of EUC values were greater than one, indicating that the taste of black carp is primarily contributed by the synergistic effect between nucleotides and amino acids.

CONCLUSIONS

This paper studied the flavor changes of pickled black carps during steaming (4-14 min) and found that the former can be significantly affected by heating conditions. Throughout the process, the meat presented the most satisfying gloss, tenderness, and chewiness at 6-8 minutes, which greatly improved its sensory score. As steaming time extended, proteins gradually degraded, producing more flavor precursor substances. When being steamed for 6 minutes, its umami and sweet amino acid content were the highest, with the TAV of IMP being 7.65, which proves that IMP was the most significant contributor to the taste. Besides, the electronic tongue principal component analysis was adopted to distinguish the flavor profile during steaming. According to the study, 6-8 min is an ideal steaming time for black carps, which provides a theoretical basis for quality control during the heating process.

ACKNOWLEDGEMENTS This study was supported by the National Key R&D Program of China(Grant No. 2018YFD0901003)

REFERENCES

Science and Technology 90:45-52 (2018). 39:56-62 (2018).

98:3563-3570 (2018).

(1999).

(2004).

P-20

1 China Fishery Statistical Year Book.Beijing, China agriculture press. 25 (2020).

2 Harimana Y, Tang X, Le GW, Xing XG, Zhang K, Sun YJ, LI YR, Ma SH, Karangwa E and Tuyishimire MA, Quality parameters of black carp (Mylopharyngodon piceus) raised in lotic and lentic freshwater systems. Lwt - Food

3 Mo YP, Lou YJ and Xue CH, Review on flavor of aquatic products. Journal of Hydroecology 25:82-84 (2005). 4 Xiong T, Wu YY, Chen SJ, Hu X, Yang XQ, Wang YQ and Yang SL, Effects of different heat processing methods on muscle protein and quality of Trachinotus ovatus. Food and Fermentation Industries 46:179-185 (2020). 5 Fu XX, Wang Y, Li DY, Jiang PF, Liu WT, Liang J, Qi LB and Dong XP, Changes in physicochemical properties, microstructure and protein properties of turbot (scophthalmus maximus L.) muscle during steam cooking. Food Science

6 Zhou CY, Pan DD, Sun YY, Li CB, Xu XL, Cao JX and Zhou GH, The effect of cooking temperature on the aggregation and digestion rate of myofibrillar proteins in Jinhua ham. Journal of the Science of Food and Agriculture

7 Hu L, Ren SJ, Shen Q, Chen J C, Ye XQ and Ling JG, Proteomic study of the effect of different cooking methods on protein oxidation in fish fillets. Rsc Advances 7:27496-27505 (2017).

8 Zheng JJ, Wu Q, Wang Y, Fan XR, Dong XP, Xin QY and Pan JF, Study on the quality changes of carp (cyprinus carpio L.) muscle during steaming. Food and Fermentation Industries 41:90-95 (2015).

9 Sun L and Xia W, Effect of steam cooking on muscle and protein heat-denature of tuna. Food & Machinery 26:22-25

10 Palka K and Daun H, Changes in texture, cooking losses, and myofibrillar structure of bovine M. semitendinosus during heating. Meat Science 51:237-243 (1999).

11 Legin AV, Rudnitskaya AM, Vlasov YG, Natale CD and Damico AD, The features of the electronic tongue in comparison with the characteristics of the discrete ion-selective sensors. Sensors and Actuators B-chemical 58:464-468

12 Garciahernandez C, Salvocomino C, Martinpedrosa F, Garciacabezon C and Rodriguezmendez ML, Analysis of red wines using an electronic tongue and infrared spectroscopy. Correlations with phenolic content and color parameters. Lwt - Food Science and Technology 118:108785 (2020).

13 Lioe HN, Apriyantono A, Takara K, Wada, K, Naoki H and Yasuda M, Low Molecular Weight Compounds Responsible for Savory Taste of Indonesian Soy Sauce. Journal of Agricultural and Food Chemistry 52:5950-5956

Corresponding author : Jing XIE. Tel.: 86-21-61900351 Fax: 86-21-61900365 E-Mail: jxie@shou.edu.cn.

INTRODUCTION

- Large yellow croaker (*Pseudosciaena crocea*), an economical marine-cultured fish species, is widely welcome for its excellent nutritional composition and delicious taste.
- Plant essential oils obtained from natural plant and have been recognized as safe substances by the US Food and Drug Administration.
- Pectin has attracted much attention owing to its non-toxic, odorless, renewable, biodegradable and low permeability of pectin coating, it is a good barrier to cut off oxygen.

AIM

The effects of pectin combined with plant essential oils on water migration, myofibrillar proteins (MPs) and muscle tissue enzyme activity of vacuum packaged large yellow croaker (*Pseudosciaena crocea*) during ice storage at $4\pm1^{\circ}$ C were investigated.

METHOD

Group	Treating methods	5				
Control	samples treated	with distilled water				
E	samples treated	with 2.5% Ethanol				
РО	samples coated with 2.5% Pectin and 0.4% oregano essential oil					
PG	samples coated v	vith 2.5% Pectin and 0.4% ginger essential oil				
Contr	Large ye	Ilow croaker PO PG Store at 4 °C with ice Myofibril protein degradation				
	WHC	Carbonyl content				
Co	oking loss	Total sulfhydryl content				
LF-	-NMR and	Intrinsic fluorescence intensity				
	MRI	SDS-PAGE				
		AG activity and NAG activity				

Pectin combined with plant essential oils inhibit water migration, myofibril proteins degradation and muscle tissue enzyme activity of vacuum packaged large yellow croaker (*Pseudosciaena crocea*) during ice storage

Weiqing LAN^{1,2} Yuqing SUN¹ Mengling CHEN¹ Xiaohong SUN^{1,4} Jing XIE^{1,2*} 1. College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China 2. Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China 3. National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China 4. Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China

Storage time (days) Storage time (days) Fig. 3 Changes in carbonyl content (A) and total sulfhydryl content (B) of large yellow croaker stored in ice at 4 ° C. a-g:

Different superscript values indicate significant differences in the same treatment group in different days (P < 0.05).

Fig.6 Changes in SDS-PAGE of large yellow croaker stored in ice at 4 ° C.

CONCLUSIONS

The study was financially supported by National Key R&D Program of China (2019YFD0901602), China Agriculture Research System (CARS-47-G26), Ability promotion project of Shanghai Municipal Science and Technology Commission Engineering Center (19DZ2284000)

REFERENCES

Cao, M., Cao, A., Wang, J., Cai, L., Regenstein, J., Ruan, Y., & Li, X. (2018). Effect of magnetic nanoparticles plus microwave or far-infrared thawing on protein conformation changes and moisture migration of red seabream (*Pagrus Major*) fillets. Food Chemistry, 266, 498–507.

Feng, X., Bansal, N., & Yang, H. (2016). Fish gelatin combined with chitosan coating inhibits myofibril degradation of golden pomfret (Trachinotus blochii) fillet during cold storage. Food Chem, 200, 283-292.

Lan, W., Hu, X., Sun, X., Zhang, X., & Xie, J. Effect of the number of freeze-thaw cycles number on the quality of Pacific white shrimp (Litopenaeus vannamei): An emphasis on moisture migration and microstructure by LF-NMR and SEM. Aquaculture and Fisheries. doi:10.1016/j.aaf.2019.05.007

Li, D., Zhao, H., Muhammad, A. I., Song, L., Guo, M., & Liu, D. (2020). The comparison of ultrasound-assisted thawing, air thawing and water immersion thawing on the quality of slow/fast freezing bighead carp (Aristichthys nobilis) fillets. Food Chemistry, 320.

Li, P., Peng, Y., Mei, J., & Xie, J. (2020). Effects of microencapsulated eugenol emulsions on microbiological, chemical and organoleptic qualities of farmed Japanese sea bass (Lateolabrax *japonicus*) during cold storage. Lwt, 118.

• Compared with the control group, PO and PG group prevent adverse texture changes by reducing cooking loss, retarding the decrease of WHC and inhibiting the content of free water.

• PO and PG also have significant protective effects on protein oxidation, including preventing carbonyl and IFI, inhibition of endogenous enzyme activity, and a decrease in the total sulfhydryl content, inhibiting endogenous enzyme activity, and reducing the total amount of sulfhydryl groups.

• pectin combined with essential oil could effectively slow down the decrease of MPs during refrigeration.

• Overall, pectin combined with plant essential oils had the best effect on maintaining the freshness of quality preservation of large yellow croaker.

• These results showed that adding EOs to pectin coating could extend the shelf life of yellow croaker for another 7 days at least.

ACKNOWLEDGEMENTS

November 24-25, 2020

Keywords: Collagen peptides, Hyaluronidase inhibition activity, type I & V

INTRODUCTION

Hyaluronidase (HAase) has been confirmed as an inflammation trigger (**Fig. 1**). Although the HAase inhibition activity of several plants has been reported, the relative research of peptides is quite limited and there is no evidence on the type V collagen peptides isolated from fish.

Given this background, we investigated the HAase inhibition activity (Fig. 6) of collagen peptides from fish skin and muscle.

MARETIALS & METHODS

Type I and V collagen peptides were obtained from the skin and muscle of shortbill spearfish (*Tetrapturus* angustirostris) (Fig. 2) according to the scheme shown in **Fig. 3**. The hyaluronidase inhibition activity was measured based on the method of Meyer ^[1]. The degree of hydrolysate (DH%) (**Fig. 4**) and SDS-PAGE (**Fig. 5**) were also investigated.

On the other hand, the ultrafiltrates of crude peptides (MWCO: 30000) and fractions eluted by RP-HPLC were subjected to measurement of hyaluronidase inhibitory activity.

Fig. 2 The head, skin and muscle of Shortbill spearfish (Tetrapturus angustirostris)

Effect of different types of collagen peptides derived from shortbill spearfish (Tetrapturus angustirostris) on hyaluronidase inhibition activity

<u>QY. HAN</u> 12, S. Ishizaki 1*

The peptide distribution of collagen peptides hydrolyzed from type I and V collagen of skin (TAS-I and TAS-V) and muscle (TAM-V and TAM-V) of shortbill spearfish was investigated by SDS-PAGE and DH% assay (Fig. 4, Fig. 5). The results showed that the molecular weight of type I collagen peptides were less than 30KDa. TAS-I with higher DH% (24.8%) and lower molecular distribution showed higher HAase inhibition activity (39.6%) compared with TAS-V and TAM-V, indicating that the smaller peptide attributed to higher HAase inhibition activity (Fig. 4). Regarding further study on HAase inhibition activity of smaller peptides by RP-HPLC, it was 7.4 times higher in purified fractions of TAS-V and the inhibition rate increased by 8.3% in purified fractions of TAS-I, compared with crude peptides respectively (Fig. 7). Compared with plant extracts, the F-3 fraction of TAS-V showed a less HAase inhibition rate (**Table 1**). On the other hand, the higher HAase inhibition activity of type I collagen peptides may attribute to the more hydrophobic fractions existed.

1 Tokyo University of Marine Science and Technology, TUMSAT, Tokyo, Japan

Fig. 5 Molecular distribution of crude type I and V collagen peptides of skin and muscle derived from shortbill spearfish

Fig. 7 Peptides mapping by RP-HPLC and the hyaluronidase inhibition activity of eluted fractions of type I and V collagen peptides from of skin and muscle derived from shortbill spearfish

It was concluded that the type I collagen peptides isolated from the skin of shortbill spearfish possessed higher HAase inhibition activity. On the other hand, since any peptides fractionated from type V collagen of the skin showed higher HAase inhibition rate compared with crude peptides, it seemed that it is necessary to study further. To the best of our knowledge, this is the first report about the bioactivity of type V collagen peptides, also the information about HAase inhibition activity of collagen peptides are very limited. So the results of our study provide a meaningful research idea.

Table 1 comparison of HAase inhibition rate of various samples		
Sample	Inhibiton rate	ConC.
The leaf of <i>Azadirachta</i> indica	67% ^[2]	0.50 mg/mL
Squid skin collagen hydrolysate	> 50% ^[3]	1.71 mg/ml
Glutathion	> 50% ^[4]	1.20 mg/ml
F-3 fraction of TAS-I	42%	1.00 mg/ml
F-3 fraction of TAS-V	60%	1.00 mg/ml

REFERENCES

[1] MEYER K. The biological significance of hyaluronic acid and hyaluronidase[J], *Physiological reviews*, 1947, 27(3): 335-59.

[2] Liyanaarachchi G D, et al. Tyrosinase, elastase, hyaluronidase, inhibitory and antioxidant activity of Sri Lankan medicinal plants for novel cosmeceuticals[J], Industrial crops and products, 2018, 111: 597-605.

[3] Nakchum L, Kim S M. Preparation of squid skin collagen hydrolysate as an antihyaluronidase, antityrosinase, and antioxidant agent[J]. Preparative Biochemistry & Biotechnology, 2016, 46(2): 123-130.

[4] Sunitha K, et al. Inhibition of hyaluronidase by N-acetyl cysteine and glutathione: Role of thiol group in hyaluronan protection[J]. International journal of biological macromolecules, 2013, 55: 39-46.

November 24-25, 2020

Effect of post—catch handling on freshness of farmed Cherry salmon (*Oncorhynchus maso*u)

Contact Information: seikaogasawara0507@gmail.com

S. Ogasawara¹, H. Wei², K. Yu³, T. Sato³, T. Hirai⁴, C. Yuan⁴ 1, Graduate School of Arts and Sciences, Iwate University, Ueda 3-18-8, Iwate 020-8550, Japan 2, The United Graduate School of Agricultural Science, Iwate University 3, Sanriku Fisheries Research Center, Iwate University 4, Faculty of Agriculture Department of Food Production, Iwate University

suppressed the increase in K value compared to that of fillet transport.

The increase of K-value for the round transportation group showed less than that of fillet one. →Considering the supply chain from fish catch to consumption, it suggested that the round transportation might be better Keep round for as than fillet one. long as possible Moreover, the effect of transportation temperature should be further studied in detail. Consume ACKNOWLEDGEMENTS The project was funded by JSPS 19H05611. REFERENCES .. Http://fukaurasalmon.jp/salmon.html 2. Naoshi T. Current status and future of the fishing industry in the disaster area, Nippon Suisan Gakkaishi,2013,79(3),458-462 3. Jeacocke, R. E.. Continuous measurements of the pH of beef muscle in intact beef carcases. Journal of Food Technology, 1977,12, 375-386. 4. Hu, Y., Zhang, J., Ebitani, K., & Konno, K. Development of simplified method for extraction ATP-related compounds from fish meat. Nippon Suisan Gakkaishi, 2013,79(2), 219–225.

CONCLUSIONS

• It was clarified that the ATP in post-mortem cherry salmon decreased rapidly and IMP accumulated in 4-5 h.

November 24-25, 2020

Changes in freshness of *Halocynthia roretzi* under various storage conditions

Akira Muto¹, Huamao Wei², Shogo Kajiwara¹, Chunhong Yuan¹ 1 Iwate University, Morioka, Japan 2 Ningbo University, Ningbo, China

Contact Information: g0119059@iwate-u.ac.jp

INTRODUCTION Xdeliciousness umami* sweet bitter salty sour Freshness decrease odor bitter SW Ascidian (Halocynthia roretzi) Problems : 1. Fisheries adjustment 2. Lack of freshness keeping technology 3. Short distribution channel

Aim : we tried to collect knowledge about changes in the freshness of them and examine effective methods for maintaining freshness.

METHODS

(1) Comparison of changes in freshness between shelled and peeled ascidians

Most of the individuals with shell became dead on day 3, which gave significant effects of digestive juices

P-24 毛大学 IWATE UNIVERSITY CONCLUSIONS 1. Maintain freshness in the long term Shelled < Peeled

2. [body fluid]

Possible for long-distance transportation. Can be eaten raw in good condition at least 4 days.

K value <u>•</u> Odor Appearance

[control]

It is necessary to evaluate the freshness of ascidians comprehensively.

Vinegared Ascidian

REFERENCES

1. Quality Index Method (QIM), the higher the score, the more defects noted He, H., Adams, R.M et al., (2017) J. food Sci. 67

2. Nippon Suisan Gakkaishi 57(4),761-766(1991) Aditep Nontratip, Shun Wada, and Hideaki Yamanaka

3.Hoyaboy https://crewship.net/2019/01/05/